Evaluation of Bernstein Polynomial as a Machine Learning technique
نویسندگان
چکیده
منابع مشابه
On Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملIterated Bernstein polynomial approximations
Iterated Bernstein polynomial approximations of degree n for continuous function which also use the values of the function at i/n, i = 0, 1, . . . , n, are proposed. The rate of convergence of the classic Bernstein polynomial approximations is significantly improved by the iterated Bernstein polynomial approximations without increasing the degree of the polynomials. The same idea applies to the...
متن کاملThe Bernstein - Bézier Form of a Polynomial −
Note: This document is meant to be viewed in color. If you only have a black and white version you can download a colored version at http://www.math.utah.edu/~pa/bform.pdf Introduction. There are many ways to write a polynomial. One particular representation is the Bernstein-Bézier form (or B-form for short) of a polynomial whose use has become extremely wide spread during the past two decades ...
متن کاملThe Trigonometric Polynomial Like Bernstein Polynomial
A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric quasi-interpolants of r...
متن کاملThe Bernstein polynomial basis: A centennial retrospective
One hundred years after the introduction of the Bernstein polynomial basis, we survey the historical development and current state of theory, algorithms, and applications associated with this remarkable method of representing polynomials over finite domains. Originally introduced by Sergei Natanovich Bernstein to facilitate a constructive proof of the Weierstrass approximation theorem, the leis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-899X
DOI: 10.1088/1757-899x/1022/1/012076